ρ-Metrics for Fixed Point Theory in Non-Metrizable Topologies

Muhammad Arshad*

 $\label{eq:continuous} \mbox{ Department of Mathematics and Statistics, International Islamic University, Islamabad, } \mbox{ Pakistan}$

marshadzia@iiu.edu.pk

We present a new framework for fixed point theory in non-metrizable spaces via ρ -metrics, maps

$$\rho \colon (X \times X) \setminus \Delta \to \mathbb{R},$$

which capture convergence through the condition $\rho(x_n,x)\to -\infty$. By constructing explicit ρ -metrics on the Sorgenfrey and Michael lines, we introduce forward and backward ρ -Cauchy completeness notions that resolve Suzuki's obstruction for rectangular metrics. Under these completeness hypotheses, Picard iterations of $\rho\psi$ -contractions yield unique fixed points in the induced ρ -topology, even when classical continuity fails. Furthermore, we derive set-theoretic bounds on tightness and weight to quantify convergence thresholds, illustrating the adaptability of ρ -metrics for dynamics in non-uniformizable settings. As an application, we provide existence, uniqueness, and approximation of solutions for a class of nonlinear differential equations.

References

- [1] Azam, A., Beg, I., & Arshad, M. (2010). Fixed point in topological vector space-valued cone metric spaces. *Fixed point theory and applications*, 2010(1), 604084. Suzuki, T. (2014).
- [2] Beg, I., Azam, A., Arshad, M., & Latushkin, Y. (2009). Common fixed points for maps on topological vector space valued cone metric spaces. *Int. J. Math. Math. Sci.*, 2009, 560264-1.
- [3] Bella, A., & Spadaro, S. (2017). Cardinal Invariants for the G_{δ} topology. arXiv preprint arXiv:1707.04871.
- [4] Bonanzinga, M. (1998). Star-Lindelof and absolutely star-Lindelof spaces. *Questions and Answers in General Topology*, 16, 79-104.
- [5] Generalized metric spaces do not have the compatible topology. *In Abstract and applied Analysis* (Vol. 2014, No. 1, p. 458098). Hindawi Publishing Corporation.
- [6] Secelean, N. A., & Wardowski, D. (2017). New fixed point tools in non-metrizable spaces. *Results in Mathematics*, 72(1), 919-935.