More Borel chromatic numbers of closed graphs
STEFAN GESCHKE

University of Hamburg
Department of Mathematics
Bundesstraie 55
20146 Hamburg
Germany

stefan.geschke@uni-hamburg.de

We give an overview of recent consistency results on Borel chromatic numbers of closed
graphs on Polish spaces. A graph G whose set of vertices is a Polish space X is closed,
Borel, or analytic iff its edge relation is, as a subset of X? without the diagonal.

The Borel chromatic number of an analytic graph G on a Polish space X is the the least
size of a family of G-independent Borel sets, i.e., Borel sets without edges, that covers all
of X. Kechris, Solecki, and Todorcevié [4] exhibited a closed graph G on the Cantor space
2¢ with the following property: an analytic graph G on a Polish space has an uncountable
Borel chromatic number iff there is a continuous graph homomorphism from Gg to G. This
Go-dichotomy implies the classical dichotomies in descriptive set theory [5]. It follows that
G has the minimal uncountable Borel chromatic number among all analytic graphs on
Polish spaces.

The upper end of the spectrum is less clear. Obviously, any graph that contains a
complete subgraph, i.e., a clique, of size k has chromatic number and hence Borel chromatic
number at least k. If a closed graph on a Polish space does not have a perfect clique, then its
Borel chromatic number can be forced to be strictly below 2% [3]. There are uncountably
Borel chromatic, closed graphs G; and Ey on 2“ whose Borel chromatic numbers can
consistently be different from that of Gy and from each other [2, 6, 7]. Each of these
graphs is closely associated with a forcing notion and sometimes the graph theoretic point
of view can give new information about classical forcing notions [1, 7].
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