Spectra of maximal almost orthogonal families of projections in the Calkin algebra

Michał Tomasz Godziszewski *

University of Lodz mtgodziszewski@gmail.com

Let H be an infinite dimensional separable complex Hilbert space with inner product $\langle \cdot | \cdot \rangle$. Let $\mathcal{B}(H)$ be a Banach space of bounded linear operators on H with the operator norm. In case when $H = \ell^2(\omega)$, we can distinguish a particular subalgebra of the Banach space $\mathcal{B}(H)$: we define $\mathcal{K}(H)$ as the smallest Banach subalgebra of $\mathcal{B}(H)$ containing all finite-dimensional operators, and we call its elements compact operators. So, $T \in \mathcal{B}(H)$ is compact if it is a limit of finite-rank operators.[†] The collection $\mathcal{K}(H)$ has the structure of a C*-algebra and is a ring-theoretical ideal in $\mathcal{B}(H)$.

The Calkin algebra is the quotient C*- algebra

$$C(H) = \mathcal{B}(H)/\mathcal{K}(H),$$

where the quotient mapping is denoted by $\pi : \mathcal{B}(H) \to \mathcal{C}(H)$. Every separable C*-algebra is isomorphic to a C*-subalgebra of the Calkin algebra. We are interested in the set of projections in the Calkin algebra, i.e., in the set:

$$P(C(H)) = \{ p \in C(H) : p = p^* = p^2 \}.$$

For a set $A \subseteq \omega$, let P_A be the projection onto $\ell^2(A) \subseteq \ell^2(\omega)$. The map $A \mapsto P_A$ embeds the Boolean algebra $\mathcal{P}(\omega)$ into the space of projections P(H). The map $A \mapsto \pi(P_A)$ defines an embedding of $\mathcal{P}(\omega)$ / fin into $P(\mathcal{C}(H))$. This map is called the diagonal embedding.

A family of projections $A \subseteq P(\mathcal{C}(H))$ is almost orthogonal if the product of any two elements $p, q \in A$ is the zero of the algebra $\mathcal{C}(H)$. In this paper we investigate the possible spectra of maximal almost orthogonal families of projections in the Calkin algebra.

The collection of projections $P(\mathcal{C}(H))$ is a natural object to study, as it can be identified with the lattice of projections on $\mathcal{B}(H)$ modulo a natural equivalence relation, so we can identify elements of $P(\mathcal{C}(H))$ with closed subspaces of $\mathcal{B}(H)$.

An important result by Wofsey is:

Theorem 1 (Wofsey, 2007) Let A be a family of disjoint uncountable sets. Then

$$\mathbb{P}_A \Vdash \forall X \in A \exists Y (|Y| = |X| \& Y \text{ is a m.a.o.f.}).$$

In other words, for any family of cardinals C there is a forcing notion such that C is included in the spectrum of m.a.o.f.'s. Wofsey's result is an operator-theoretic counterpart of the (positive) result of Hechler concerning spectra of maximal almosts disjoint families of sets. We have been searching for an operator-theoretic counterpart of the (negative) strengthening of Hechler's result on spectra of mad families given by Blass.

Thus, our main question in this paper is: can we isolate conditions, under which a specific set of cardinals C can be not only included, but actually equal to the spectrum of maximal almost orthogonal family of projections in a given model of set theory?

^{*}This is joint work with Vera Fischer (University of Vienna).

[†]Equivalently, an operator $T \in \mathcal{B}(H)$ is compact if the image of the closed unit ball $B \subset H$ under T is precompact, which in turn is equivalent to T being weak-norm continuous when restricted to B.

Theorem 2 Assume GCH. Let C be a set of cardinals satisfying the following conditions:

- $\forall \kappa \in C \ \kappa \ is \ uncountable$,
- C is closed,
- $\forall \kappa \in [\aleph_1, |C|] \ \kappa \in C$,
- $\forall \kappa \in C \operatorname{cf}(\kappa) = \omega \Rightarrow \kappa^+ \in C.$

Then there exists a forcing notion \mathbb{P} such that it satisfies the countable chain condition and forces the spectrum of maximal almost orthogonal families to be exactly C.

References

- [1] Andreas Blass. Simple cardinal characteristics of the continuum. In: Haim Judah, editor, Set Theory of the Reals, volume 6 of Israel Mathematical Conferences Proceedings, pages 63-90. American Mathematical Society, Providence, 1993.
- [2] Ilijas Farah Combinatorial Set Theory of C*-algebras, Springer Monographs in Mathematics, Springer Nature Switzerland, 2019.
- [3] Stephen H. Hechler. Short complete nested sequences in $\beta \mathbb{N} \setminus \mathbb{N}$ and small maximal almost-disjoint families. General Topology and Its Applications, 2:139-149, 1972.
- [4] Kenneth Kunen. Set Theory: An Introduction to Independence Proofs, North-Holland, 1980.
- [5] Saharon Shelah & Otmar Spinas, Mad Spectra, *The Journal of Symbolic Logic*, Vol. 80, No. 3 (Sep., 2015), pp. 901-916.
- [6] Eric Wofsey, $P(\omega)/fin$ and Projections in the Calkin Algebra, *Proceedings of the American Mathematical Society*, Vol. 136, No. 2 (Feb., 2008), pp. 719-726