Counting spaces of functions on separable compact lines

MACIEJ KORPALSKI*

Instytut Matematyczny, Uniwersytet Wrocławski, pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland Maciej.Korpalski@math.uni.wroc.pl

Let \mathcal{K} be a class of separable compact lines of topological weight ω_1 . The main problem of this talk is as follows.

Question 1 How many isomorphic types of spaces C(K) are there for $K \in \mathcal{K}$?

Assuming the continuum hypothesis, by methods of Cabello Sanchez, Castillo, Marciszewski, Plebanek and Salguero-Alarcon [1] it follows that there are 2^{ω_1} many such isomorphic types. On the other hand, assuming the Baumgartner's axiom, we have only one class of isomorphic types C(K), for $K \in \mathcal{K}$.

Using methods of Michalak [2], it is also not very hard to show similar results for the class \mathcal{K}' of finite products of spaces from the class \mathcal{K} and metrizable spaces.

References

- F. Cabello Sánchez, J.M.F. Castillo, W. Marciszewski, G. Plebanek and A. Salguero Alarcón, Sailing over three problems of Koszmider, J. Funct. Anal. 279 (2020), no. 4, 108571, 22 pp.
- [2] A. Michalak, On Banach spaces of continuous functions on finite products of separable compact lines Stud. Math. 251 (2020), no. 3, 247–275.

^{*}This is joint work with Witold Marciszewski (University of Warsaw) and Piotr Koszmider (Institute of Mathematics of the Polish Academy of Sciences).